字体
关灯
上一页 回目录    收藏 下一页

转炉炼钢工艺(4/6)

(5)供氧压力:高氧压与低枪位的作用相同,故氧压高时,枪位应高些。

恒压变枪操作的几种模式,如图11所示

a高―低―高的六段式操作:

开吹枪位较高,及早形成初期渣;二批料加入后适时降枪,吹炼中期炉渣返干时又提枪化渣;吹炼后期先提枪化渣后降枪;终点拉碳出钢。

b高―低―高的五段式操作:

五段式操作的前期与六段式操作基本一致,熔渣返干时可加入适量助熔剂调整熔渣流动性,以缩短吹炼时间。

c高一低一高一低的四段式操作:

在铁水温度较高或渣料集中在吹炼前期加入时可采用这种枪位操作。

开吹时采用高枪位化渣,使渣中含(feo)量达25~30%,促进石灰熔化,尽快形成具有一定碱度的炉渣,增大前期脱磷和脱硫效率,同时也避免酸性渣对炉衬的侵蚀。

在炉渣化好后降枪脱碳,为避免在碳氧化剧烈反应期出现返干现象,适时提高枪位,使渣中(feo)保持在10~15%,以利磷、硫继续去除。

在接近终点时再降枪加强熔池搅拌,继续脱碳和均匀熔池成分和温度,降低终渣(feo)含量。

四、造渣制度

造渣是转炉炼钢的一项重要操作。

所谓造渣,是指通过控制入炉渣料的种类和数量,使炉渣具有某些性质,以满足熔池内有关炼钢反应需要的工艺操作。

造渣制度是确定合适的造渣方法、渣料的种类、渣料的加入数量和时间以及加速成渣的措施。

由于转炉冶炼时间短,必须快速成渣,才能满足冶炼进程和强化冶炼的要求,同时造渣对避免喷溅、减少金属损失和提高炉衬寿命都有直接影响。

一、成渣过程及造渣途径

转炉冶炼各期,都要求炉渣具有一定的碱度,合适的氧化性和流动性,适度的泡沫化。

o吹炼初期,要保持炉渣具有较高的氧化性,∑(feo)稳定在25%-30%,以促进石灰熔化,迅速提高炉渣碱度,尽量提高前期去磷去硫率和避免酸性渣侵蚀炉衬;

o吹炼中期,炉渣的氧化性不得过低(∑(feo)保持在10%-16%),以避免炉渣返干;

o吹炼末期,要保证去除p、s所需的炉渣高碱度,同时控制好终渣氧化性,如冶炼[c]≥0.10%的镇静钢,终渣(feo)应控制不大于15%-20%;冶炼沸腾钢,终渣(feo)应不小于12%,需避免终渣氧化性过弱或过强。

炉渣粘度和泡沫化程度也应满足冶炼进程需要。

前期要防止炉渣过稀,中期渣粘度要适宜,末期渣要化透作黏。

泡沫性炉渣应尽早形成,并将其泡沫化程度控制在合适范围,以达到喷溅少、拉碳准、温度合适、达到磷硫去除的最佳吹炼效果。

转炉成渣过程,如图12所示:

o吹炼初期,炉渣主要来自铁水中si、mn、fe的氧化产物。

加入炉内的石灰块由于温度低,表面形成冷凝外壳,造成熔化滞止期,对于块度为40mm左右的石灰,渣壳熔化需数十秒。

由于发生si、mn、fe的氧化反应,炉内温度升高,促进了石灰熔化,这样炉渣的碱度逐渐得到提高。

o吹炼中期,随着炉温的升高和石灰的进一步熔化,同时脱碳反应速度加快导致渣中(feo)逐渐降低,使石灰融化速度有所减缓,但炉渣泡沫化程度则迅速提高。

由于脱碳反应消耗了渣中大量的(feo),再加上没有达到渣系液相线正常的过热度,使化渣条件恶化,引起炉渣异相化,并出现返干现象。

o吹炼末期,脱碳速度下降,渣中(feo)再次升高,石灰继续熔化并加快了熔化速度。

同时,熔池中乳化和泡沫现象趋于减弱和消失。

o初期渣,主要矿物为钙镁橄榄石和玻璃体(sio2)。

钙镁橄榄石是锰橄榄石(2mno.sio2)、铁橄榄石(2feo.sio2)和硅酸二钙(2cao.sio2)的混合晶体。

当(mno)高时,它是以2feo.sio2和2mno.sio2为主,通常玻璃体不超过7%-8%,渣中自由氧化物相(ro)很少。

o中期渣:石灰与钙镁橄榄石和玻璃体作用,生成cao?sio2,3cao?2sio2,2cao?sio2和3cao?sio2等产物,其中最可能和最稳定的是2cao?sio2,其熔点为2103c。

o末期渣:ro相急剧增加,生成的3cao?sio2分解为2cao?sio2和cao,并有2cao?fe2o3生成。

石灰渣化机理和影响因素:

炼钢过程中成渣速度主要指的是石灰熔化速度,所谓的快速成渣主要指的是石灰快速熔解于渣中。

o吹炼初期,各元素的氧化产物feo、sio2、mno、fe2o3等形成了熔渣。

加入的石灰块就浸泡在初期渣中,初期渣中的氧化物从石灰表面向其内部渗透,并与cao发生化学反应,生成一些低熔点的矿物,引起石灰表面的渣化。

这些反应不仅在石灰块的外表面进行,而且也在石灰气孔的内表面进行。

o但是在吹炼初期,sio2易与cao反应生成钙的硅酸盐,沉集在石灰块表面上,如果生成物是致密的,高熔点的2cao?sio2(熔点2130c)和3cao?sio2(熔点2070c),则将阻碍石灰的进一步渣化熔解。

如生成cao?sio2(熔点1550c)和3cao?sio2(熔点1480c)则不会妨碍石灰熔解。

o在吹炼中期,碳的激烈氧化消耗大量的(feo),熔渣的矿物组成发生了改变,由,熔点升高,石灰的渣化有所减缓。

吹炼末期,渣中(feo)有所增加,石灰的渣化加快,渣量又有增加。

影响石灰溶解速度的因素主要有:

石灰本身质量

铁水成分

炉渣成分

供氧操作

白云石造渣。

采用白云石或轻烧白云石代替部分石灰石造渣,提高渣中mgo含量,减少炉渣对炉衬的侵蚀,具有明显效果。

omgo在低碱度渣中有较高的熔解度,采用白云石造渣,初期渣中mgo浓度提高,会抑制熔解炉衬中的mgo,减轻初期炉渣对炉衬的侵蚀。

同时,前期过饱和的mgo会随着炉渣碱度的提高而逐渐析出,使后期渣变粘,可以使终渣挂在炉衬表面上,形成炉渣保护层,有利于提高炉龄。

造渣制度

o在保证渣中有足够的∑(feo)、渣中(mgo),不超过6%的条件下,增加初期渣中mgo含量,有利于早化渣并推迟石灰石表面形成高熔点致密的2cao?sio2壳层。

萤石的化渣作用

萤石的主要成分为caf2,并含有sio2、fe2o3、al2o3、caco3和少量磷、硫等杂质。

它的熔点约1203k。

萤石加入炉内后,在高温下即爆裂或碎块并迅速熔化。

它的作用体现在:

ocaf2与cao作用形成熔点为1635k的共晶体,直接促进石灰的熔化;

o萤石能显著降低2cao?sio2的熔点,使炉渣在高碱度下有较低的熔化温度;

ocaf2可降低炉渣粘度。

二、造渣方法

根据铁水成分和所炼钢种来确定造渣方法。

常用的造渣方法有单渣法、双渣法和双渣留渣法。

o单渣法:整个吹炼过程中只造一次渣,中途不倒渣、不扒渣,直到吹炼终点出钢。

入炉铁水si、p、s含量较低,或者钢种对p、s要求不太严格,以及冶炼低碳钢,均可以采用单渣操作。

采用单渣操作,工艺比较简单,吹炼时间短,劳动条件好,易于实现自动控制。

单渣操作一般脱磷效率在90%左右,脱硫效率约为30%-40%。

o双渣法:整个吹炼过程中需要倒出或扒出约1/2-2/3炉渣,然后加入渣料重新造渣。

根据铁水成分和所炼钢种的要求,也可以多次倒渣造新渣。

在铁水含磷高且吹炼高碳钢,铁水硅含量高,为防止喷溅,或者在吹炼低锰钢种时,为防止回锰等均可采用双渣操作。

双渣操作脱磷效率可达95%以上,脱硫效率约60%左右。

双渣操作会延长吹炼时间,增加热量损失,降低金属收得率,也不利于过程自动控制。

其操作的关键是决定合适的放渣时间。

o双渣留渣法:将双渣法操作的高碱度、高氧化铁、高温、流动性好的终渣留一部分在炉内,然后在吹炼第一期结束时倒出,重新造渣。

此法的优点是可加速下炉吹炼前期初期渣的形成,提高前期的去磷、去硫率和炉子热效率,有利于保护炉衬,节省石灰用量。

采用留渣操作时,在兑铁水前首先要加废钢稠化冷凝熔渣,当炉内无液体渣时才可兑入铁水,以避免引发喷溅。

泡沫渣:

o由于炉内的乳化现象,大大发展了气―熔渣―金属液的界面,加快了炉内化学反应速度,从而达到良好的吹炼效果。

当然若控制不当,严重的泡沫渣也会引发事故。

o大量的研究表明,气泡少而小,炉渣表面张力低,炉渣粘度大,温度低,泡沫容易形成并稳定地存在于渣中,生成泡沫渣。

o吹炼前期,脱碳速度小,泡沫小而无力,易停留在渣中,炉渣碱度低,∑(feo)较高,有利于渣中铁滴生成co气泡,并含有一定量的sio2、p2o5等表面活性物质,因此易起泡沫。

o吹炼中期,脱碳速度大,大量的co气泡能冲破渣层而排出,炉渣碱度高,∑(feo)较低,sio2、p2o5表面活性物质的活度降低,因此引起泡沫渣的条件不如吹炼初期,但如能控制得当,避免或减轻熔渣返干现象,就能得到合适的泡沫渣。

o吹炼后期,脱碳速度降低,产生的co减少,碱度进一步提高,∑(feo)较高,但[c]较低,产生的co少,表面活性物质的活度比中期进一步降低,因此,泡沫稳定的因素大大减弱,泡沫渣趋向消除。
本章未完,请翻下一页继续阅读.........
上一页 回目录    收藏 下一页
EN